Primary and Secondary Electrical Distribution Systems

Critical Facilities Round Table
12th Quarterly Membership Meeting
June 2, 2006

David D. Roybal. P.E.
Eaton Electrical
Cutler-Hammer Products
Utility Considerations

- Capacity
- Voltage and Sources
- Size of Metering Equipment
- Relaying Requirements
- Station Batteries
Utility Metering

• Requirements Dictated by the Utility
• EUSERC (as a reference)
 – 15 kV: 48”W x 72” to 96”D
 – 21 kV: 60”W x 96”D
 – 38 kV: 72”W x 129”D
115 kV Substation Service

(Approximately 80’ by 75’)

Section B–B
Types of Systems

• Radial
• Primary-Selective Radial
• Loop-Primary Selective
• Secondary Selective
• Sparing Transformer
• Spot Network
Simple Radial System

• Simple, least costly
• Easy to coordinate
• No idle parts
Radial System

Figure 1.1-1. Simple Radial System
Primary and Secondary Radial

Figure 1.1-2. Primary and Secondary Simple Radial System
Loop Primary – Radial Secondary
Loop Switching – Substation Transformer

Figure 1.1-4. Secondary Unit Substation Loop Switching
Loop Switching – Pad Mount Transformer

Figure 1.1-5. Pad-Mounted Transformer Loop Switching
Primary Selective Radial System

- Duplex or selector switch
- Spare primary incoming circuit
- Duration of outage from cable failure limited
Primary Selective – Secondary Radial

Figure 1.1-7. Basic Primary Selective — Radial Secondary System
Duplex Selector Switch

Figure 1.1-8. Duplex Fused Switch in Two Structures
Selector Switch – Single Structure

Figure 1.1-9. Fused Selector Switch in One Structure
Secondary Selective System

• Normally operated as two electrically independent substations with tie breaker open
• Failure of either primary circuit affects only one bus
• Service restored by opening dead bus main and closing tie
• Operation can be made automatic
• Transformers not paralleled so fault currents similar to radial
Two-Source Primary – Secondary Selective

Figure 1.1-10. Two-Source Primary — Secondary Selective System
Sparing Transformer System

• Alternative to Double-Ended Substations
• Single Common Backup Transformer
• Service restored by opening dead bus main and closing tie
• Operation can be made automatic
• Transformers not paralleled so fault currents similar to radial
• Location of substations limited (must be clustered)
Sparing Transformer

Figure 1.1-11. Sparing Transformer System
Spot Network

• Transformers paralleled on the secondary side
• Uses network protectors
• If primary voltage fails, associated protector automatically opens
• Other protector remains closed
• No “dead time” on bus, even momentarily
• Upon voltage restoration automatically synchronizes and re-closes
• Improved voltage regulation
• Secondary fault current increased
Spot Network

Figure 1.1-12. Three-Source Spot Network
Primary Equipment

- Air Terminal Chamber
- Metal-Clad Switchgear
 Circuit Breaker and Relays
- Metal-Enclosed Switchgear
 Switch and Fuse
- Others (Reclosers and Interrupters)
Metal-Clad Switchgear

- Defined in ANSI C37.20.2 as metal enclosed power switchgear
- Removable (draw-out) type switching and interrupting devices
- Connect and disconnect position
- Major parts of the switchgear enclosed by grounded metal barriers for compartmentalization
- Automatic shutters that cover primary stabs or studs
- All primary bus conductors and connections covered with insulation material throughout
Protective Relays
(ANSI Device Numbers)

27 - Undervoltage
47 - Phase sequence
49 - Thermal overload
50 - Instantaneous
51 - Time overcurrent
59 - Overvoltage
63 - Sudden pressure
67 - Directional overcurrent
86 - Lockout
87 - Differential
Metal-Enclosed Interrupter Switchgear

- Defined in ANSI C37.20.3 as metal-enclosed power switchgear
- Interrupter switches
- Power fuses (current limiting or non-current limiting)
- Bare bus and connections
- Instrument transformers
- Control wiring and accessory devices
Power Fuse Coordination

Expulsion
 Inverse-time
 Easier to coordinate

Current Limiting
 Steep straight line
 More difficult to coordinate
Pad Mounted Transformer
Switching and Fusing

- LBOR Switch
- Oil Interruption
- Rated 200, 300, 400 A
- $I_{sc} = 12 \text{ kA}$
- Current Limiting and Expulsion Fuses
- Limited Sizes
Transformers

Liquid Filled Substation Transformer

Dry Type Substation Transformer

Typical Pad-Mounted Transformer

Cast Coil Substation Transformer
Unit Substation Transformers

- 112.5 through 20,000 kVA
- Maximum 69 kV Primary
- Maximum 34.5 kV Secondary
- Bushings wall mounted
- Part of a substation lineup
- Can be custom designed to meet custom dimensions
Padmount Transformers

- Up to 5,000 kVA
- Maximum 34.5 kV Primary
- Maximum 600 V Secondary
- Weather resistant high and low voltage compartments
- Tamper-resistant Design
- No Fan Cooling Available
Network Transformers

- 300-2500 kVA
- Maximum 34.5 kV Primary
- Maximum 600 V Secondary
- Used in areas of high load density
- Designed for use in a secondary network system in either subway or vault applications.
Dry Versus Liquid Transformers

- **Dry**
 - No fluid to spill or burn
 - Cost is higher than oil
 - Resistant to moisture and chemical contamination
 - Minimum maintenance
 - UL Listing is available

- **Liquid**
 - Lowest purchase price
 - Hermetically sealed tank for harsh environments
 - Lowest losses per purchase dollar
 - Best balance of design properties- dielectric, thermal, and cost
 - UL Listing is available
Liquid Filled Technology Benefits

- Lowest Purchase Cost
- Lowest Loss Per Purchase Dollar
- Ability to operate in adverse conditions
- Excellent Dielectric Properties
 - Smaller Footprint
 - Better losses
- Options available for “Safety-Related” and “Environmentally Sensitive Applications”
Dry Type Technology Benefits

- Environmentally Safe
- Non-flammable
- Minimal Maintenance
- Coordination Flexibility
- Higher Fan Cooled Rating
Comparison of Transformer Costs

Liquid Filled Transformers
- Mineral Oil (Outdoor) 1.00
- Vegetable Oil (Indoor/Outdoor) 1.20
- Silicone (Indoor/Outdoor) 1.35
- Pad Mounted – 5% Less than Substation Design

Dry Type Transformers
- Vacuum Pressure Impregnated 1.25
- Vacuum Pressure Imp. - Epoxy 1.35
- Cast Coil 1.55 to 2.0
- Lower Temperature Rise – 15% to 35%
- Outdoor – Add 20%
Loss Evaluation

\[I^2R \text{ Losses} = \text{Total Losses (TL)} - \text{No Load Losses (NL)} \]

\[I^2R \text{ Losses} \text{ are proportional to the Load Factor Squared} \]

Load Factor = Actual Load kVA/Rated Base kVA

Operating Losses = No Load Losses + \[I^2R \text{ Losses at the appropriate Load Factor} \]
Loss Evaluation Example

Losses in watts for a 1000 kVA oil-filled transformer:
1,800 watts no load losses
15,100 watts full load losses
Load losses are approximately 13,300 watts (15,100 – 1,800)

At 0% load: 1,800 watts

At 50% load: 1,800 watts + (13,300)(.5)^2 = 1,800 watts + 3,325 watts = 5,125 watts

At 100% load: 1,800 watts + 13,300 watts = 15,100 watts

At 110% load: 1,800 watts + (13,300)(1.1)^2 = 1,800 watts + 16,093 watts = 17,893 watts
Auxiliary Fan Cooling

- Liquid filled transformers
 Fan cooling - 15% (750 kVA to 2000 kVA)
 Fan cooling - 25% (2500 kVA and above)

- Dry type transformers
 Fan cooling - 33% (All ratings)
Environment

• Maximum altitude 1000 m (3300 feet)
 Rating reduced 0.3% to 0.5% for each 100 m (330 feet) above that altitude

• Indoor and outdoor designs available

• Ambient
 30 degree C (86 degree F) average over 24 hours
 40 degree C (104 degree F) maximum
Transformers - Liquid Filled

- Insulation systems (Oil, Silicone, Vegetable Oil)
- Temperature rise
 - 55 degree C
 - 65 degree C
- Efficiency - 99%
- Overload capacity - ANSI C37.92
- Auxiliary devices
 - Temperature gauge
 - Liquid level gauge
 - Pressure vacuum gauge
 - Sudden pressure relay
 - Pressure relief device
Transformers - Dry type

- Insulation systems
 - Varnish
 - Polyester
 - Silicone
 - Epoxy
- Design types
 - Dip and bake
 - VPI
 - Cast coil
- Insulation classes
 - Class H 220 degree C
 - Class F 185 degree C
 - Class B 150 degree C
Transformers - Dry Type

• Temperature rise
 150 degree C
 115 degree C
 100 degree C (epoxy)
 80 degree C

• Efficiency
 97% to 98% (typical)
 99% (low temperature rise)

• Overload capacity - ANSI C57.96

• Auxiliary devices
 Temperature gauge
Secondary Neutral Grounding

• Solid Grounding
• Impedance Grounding
 Low resistance
 High resistance
 Reactance
Secondary Equipment

- Air terminal chamber
- Busway
- Low voltage switchboard
 Molded Case Circuit breakers
- Metal-Enclosed Switchgear
 Low voltage Power circuit breakers
Low-Voltage Switchboards (UL891) Versus Metal-Enclosed Switchgear (UL1558)
Paralleling Switchgear

Figure 42.3-4. Typical Electrical System with EGP3 Assembly and ATS Units (3-Generator Sources)
Low-Voltage Switchboards (UL891)
Versus
Metal-Enclosed Switchgear (UL1558)

- Molded Case Circuit Breakers (UL489)
- Insulated Case Circuit Breakers (UL489)
- Power Circuit Breakers (UL1066)
- Front Access or Rear Access
- Drawout or Fixed Mounted
- Manually or Electrically Operated
Low-Voltage Circuit Breaker Types

Molded Case Circuit Breakers
- Tested in accordance with UL489 & Nema AB-1
- Open Air Test - Rated @ 80% (Optional 100%)
- Over Toggle Mechanism
- Sealed Case - Not Maintainable
- Applied in Switchboards/Panelboards

Insulated Case Circuit Breakers
- Tested in accordance with UL489 & Nema AB-1
- Open Air Test - Rated @ 80% or 100%
- 2-Step Stored Energy Mechanism
- Sealed Case - Not Fully Maintainable
- Applied in Switchboards

Power Circuit Breakers
- Tested in accordance with UL1066 & ANSI C37
- Tested in the Enclosure - Rated @ 100%
- 2-Step Stored Energy Mechanism
- Open Access - Fully Maintainable
- Applied in Metal-Enclosed Draw-out Swgr
Low-Voltage Circuit Breaker Typical Ratings

Molded Case Circuit Breakers
- Frame Size: 100 through 3000 ampere
- Interrupting: 10/35/65/100 kA @ 480 Volts
- Limiters Available: 200 kAIC
- Instantaneous: 10-13X Frame Rating @ various X/R

Insulated Case Circuit Breakers
- Frame Size: 400 (800) through 5000 ampere
- Interrupting: 65/85/100 kA @ 480 Volts
- Limiters Not Normally Available
- Inst./Short Time: 25/35/65 kA @ various X/R

Power Circuit Breakers
- Frame Size: 800 through 5000 ampere
- Interrupting: 65/85/100 kA @ 600 Volts
- Limiters Available: 200 kAIC
- Short Time: 35/65/85/100 kA @ X/R of 6.6
TCC with Power Circuit Breakers

PCB 2400 amp
- 480V, Microprocessor Trip, LS
- Frame size: 3200 A
- Sensor: 2400
- LTPU: 1.0 f(S) = 2400 amp
- STPU: 5.0 f(s) = 12000 amp
- LTD: 7.00 sec.
- STD: .3 sec.
- No Instantaneous Trip

PCB 800 amp
- 480V, Microprocessor Trip, LS
- Frame size: 800 A
- Sensor: 800
- LTPU: 1.00 f(S) = 800 amp
- STPU: 5.0 f(s) = 4000 amp
- LTD: 7.00 sec.
- STD: .1 sec.
- No Instantaneous Trip

MCCB 200 amp
- 480V, Microprocessor Trip, LSI
- Frame size: 250 A
- Trip: 200 A
- Inst. PU: 10.0*T = 2000 A

MCCB 50 amp
- 480V, Thermal-Magnetic Trip
- Frame size: 100 A
- Trip: 50 A
- Inst. PU: Non adjustable
Maintenance - MCCBs and ICCBs

- Enclosed design requires little maintenance
- Terminal connections and trip units tightened to the proper torque values
- Inspect conductors
- Visually inspect and operate periodically
- Replacement parts are not available
- Repair, refurbishment, or remanufacture not recommended - replace damaged breakers
Maintenance - PCBs

- Designed to be serviced
- Replacement parts are available (contacts, pole assemblies, arc chutes)
- Inspection and maintenance program is recommended
- Keep it dry, keep it clean, keep it tight
Primary and Secondary Electrical Distribution Systems

Critical Facilities Round Table
12th Quarterly Membership Meeting
June 2, 2006

David D. Roybal. P.E.
Eaton Electrical
Cutler-Hammer Products